blank Quick help
blank Maintenance news

Scheduled maintenance

Regular maintenance outages:
between 05.00 and 05.15 hrs CET (Monday to Sunday).

Other outages
Availability

2022.02.11

More...
blank News flashes

News Flashes

New version of the European Patent Register – SPC proceedings information in the Unitary Patent Register.

2024-07-24

More...
blank Related links

Extract from the Register of European Patents

EP About this file: EP3766071

EP3766071 - METHOD FOR DATA REFRESH FOR ANALOG NON-VOLATILE MEMORY IN DEEP LEARNING NEURAL NETWORK [Right-click to bookmark this link]
Former [2021/03]METHOD AND APPARATUS FOR DATA REFRESH FOR ANALOG NON-VOLATILE MEMORY IN DEEP LEARNING NEURAL NETWORK
[2022/27]
StatusNo opposition filed within time limit
Status updated on  29.09.2023
Database last updated on 29.10.2024
FormerThe patent has been granted
Status updated on  21.10.2022
FormerGrant of patent is intended
Status updated on  22.06.2022
FormerRequest for examination was made
Status updated on  18.12.2020
FormerThe international publication has been made
Status updated on  21.09.2019
Most recent event   Tooltip14.06.2024Lapse of the patent in a contracting state
New state(s): MC
published on 17.07.2024  [2024/29]
Applicant(s)For all designated states
Silicon Storage Technology, Inc.
450 Holger Way
San Jose, CA 95134 / US
[2021/03]
Inventor(s)01 / TRAN, Hieu, Van
2642 Gayley Place
San Jose, CA 95135 / US
02 / TIWARI, Vipin
5599 Asterwood Dr.
Dublin, CA 94568 / US
03 / DO, Nhan
20451 Walnut Avenue
Saratoga, CA 95070 / US
 [2021/03]
Representative(s)Betten & Resch
Patent- und Rechtsanwälte PartGmbB
Maximiliansplatz 14
80333 München / DE
[2021/03]
Application number, filing date19767098.716.01.2019
[2021/03]
WO2019US13871
Priority number, dateUS201862642867P14.03.2018         Original published format: US 201862642867 P
US20181599022025.05.2018         Original published format: US201815990220
[2021/03]
Filing languageEN
Procedural languageEN
PublicationType: A1 Application with search report
No.:WO2019177687
Date:19.09.2019
Language:EN
[2019/38]
Type: A1 Application with search report 
No.:EP3766071
Date:20.01.2021
Language:EN
The application published by WIPO in one of the EPO official languages on 19.09.2019 takes the place of the publication of the European patent application.
[2021/03]
Type: B1 Patent specification 
No.:EP3766071
Date:23.11.2022
Language:EN
[2022/47]
Search report(s)International search report - published on:US19.09.2019
(Supplementary) European search report - dispatched on:EP31.08.2021
ClassificationIPC:G11C16/34, G11C7/16, G11C11/54, G11C11/56, G11C16/28, G11C27/00, // G11C7/10, G11C16/04, G11C16/08, G11C16/16, G11C16/26, G11C29/44, G11C29/52, G06N3/04, G06N3/063, G06N3/08
[2021/39]
CPC:
G11C7/16 (EP,KR); G11C16/28 (EP,KR); G11C16/3431 (KR,US);
G06N3/045 (EP,KR); G06N3/063 (EP,KR); G06N3/08 (EP,KR,US);
G11C11/54 (EP,KR,US); G11C11/5642 (EP,KR); G11C16/0425 (EP,KR,US);
G11C16/08 (EP,KR); G11C16/16 (EP,KR); G11C16/26 (EP,US);
G11C16/30 (KR,US); G11C16/3418 (EP,KR); G11C27/005 (EP,KR);
G11C7/1006 (EP,KR); G11C2216/04 (EP,KR); G11C29/4401 (EP,KR);
G11C29/52 (EP,KR) (-)
Former IPC [2021/03]G11C16/26, G11C16/34, G11C16/02
Designated contracting statesAL,   AT,   BE,   BG,   CH,   CY,   CZ,   DE,   DK,   EE,   ES,   FI,   FR,   GB,   GR,   HR,   HU,   IE,   IS,   IT,   LI,   LT,   LU,   LV,   MC,   MK,   MT,   NL,   NO,   PL,   PT,   RO,   RS,   SE,   SI,   SK,   SM,   TR [2021/03]
Extension statesBANot yet paid
MENot yet paid
Validation statesKHNot yet paid
MANot yet paid
MDNot yet paid
TNNot yet paid
TitleGerman:VERFAHREN ZUR DATENAUFFRISCHUNG FÜR EINEN ANALOGEN NICHTFLÜCHTIGEN SPEICHER IN EINEM NEURONALEN TIEFENLERNNETZ[2022/27]
English:METHOD FOR DATA REFRESH FOR ANALOG NON-VOLATILE MEMORY IN DEEP LEARNING NEURAL NETWORK[2022/27]
French:PROCÉDÉ DE RAFRAÎCHISSEMENT DE DONNÉES POUR MÉMOIRE NON VOLATILE ANALOGIQUE DANS UN RÉSEAU NEURONAL À APPRENTISSAGE PROFOND[2022/27]
Former [2021/03]VERFAHREN UND VORRICHTUNG ZUR DATENAUFFRISCHUNG FÜR EINEN ANALOGEN NICHTFLÜCHTIGEN SPEICHER IN EINEM NEURONALEN TIEFENLERNNETZ
Former [2021/03]METHOD AND APPARATUS FOR DATA REFRESH FOR ANALOG NON-VOLATILE MEMORY IN DEEP LEARNING NEURAL NETWORK
Former [2021/03]PROCÉDÉ ET APPAREIL DE RAFRAÎCHISSEMENT DE DONNÉES POUR MÉMOIRE NON VOLATILE ANALOGIQUE DANS UN RÉSEAU NEURONAL À APPRENTISSAGE PROFOND
Entry into regional phase14.10.2020National basic fee paid 
14.10.2020Search fee paid 
14.10.2020Designation fee(s) paid 
14.10.2020Examination fee paid 
Examination procedure14.10.2020Examination requested  [2021/03]
24.03.2022Amendment by applicant (claims and/or description)
23.06.2022Communication of intention to grant the patent
12.10.2022Fee for grant paid
12.10.2022Fee for publishing/printing paid
12.10.2022Receipt of the translation of the claim(s)
Opposition(s)24.08.2023No opposition filed within time limit [2023/44]
Fees paidRenewal fee
20.01.2021Renewal fee patent year 03
20.01.2022Renewal fee patent year 04
Opt-out from the exclusive  Tooltip
competence of the Unified
Patent Court
See the Register of the Unified Patent Court for opt-out data
Responsibility for the accuracy, completeness or quality of the data displayed under the link provided lies entirely with the Unified Patent Court.
Lapses during opposition  TooltipAL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
IT23.11.2022
LT23.11.2022
LV23.11.2022
MC23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SI23.11.2022
SK23.11.2022
SM23.11.2022
IE16.01.2023
LU16.01.2023
BE31.01.2023
CH31.01.2023
LI31.01.2023
GB23.02.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
[2024/29]
Former [2024/26]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
IT23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SI23.11.2022
SK23.11.2022
SM23.11.2022
IE16.01.2023
LU16.01.2023
BE31.01.2023
CH31.01.2023
LI31.01.2023
GB23.02.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2024/08]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SI23.11.2022
SK23.11.2022
SM23.11.2022
IE16.01.2023
LU16.01.2023
BE31.01.2023
CH31.01.2023
LI31.01.2023
GB23.02.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/51]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SI23.11.2022
SK23.11.2022
SM23.11.2022
LU16.01.2023
BE31.01.2023
CH31.01.2023
LI31.01.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/49]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SK23.11.2022
SM23.11.2022
LU16.01.2023
BE31.01.2023
CH31.01.2023
LI31.01.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/47]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SK23.11.2022
SM23.11.2022
LU16.01.2023
CH31.01.2023
LI31.01.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/43]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SK23.11.2022
SM23.11.2022
LU16.01.2023
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/38]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SK23.11.2022
SM23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/37]AL23.11.2022
AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SM23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/35]AT23.11.2022
CZ23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RO23.11.2022
RS23.11.2022
SE23.11.2022
SM23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/34]AT23.11.2022
DK23.11.2022
EE23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RS23.11.2022
SE23.11.2022
SM23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/33]AT23.11.2022
DK23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RS23.11.2022
SE23.11.2022
SM23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/25]AT23.11.2022
ES23.11.2022
FI23.11.2022
HR23.11.2022
LT23.11.2022
LV23.11.2022
PL23.11.2022
RS23.11.2022
SE23.11.2022
NO23.02.2023
GR24.02.2023
IS23.03.2023
PT23.03.2023
Former [2023/23]AT23.11.2022
ES23.11.2022
FI23.11.2022
LT23.11.2022
LV23.11.2022
SE23.11.2022
NO23.02.2023
GR24.02.2023
PT23.03.2023
Former [2023/22]AT23.11.2022
ES23.11.2022
FI23.11.2022
LT23.11.2022
SE23.11.2022
NO23.02.2023
PT23.03.2023
Former [2023/20]LT23.11.2022
NO23.02.2023
Documents cited:Search[A]US5479170  (CAUWENBERGHS GERT [US], et al);
 [A]US6151246  (SO HOCK C [US], et al);
 [IA]US2007263454  (CORNWELL MICHAEL J [US], et al);
 [A]US2017092371  (HARARI ELI [US]);
 [A]US2017337466  (BAYAT FARNOOD MERRIKH [US], et al)
International search[A]US5239505  (FAZIO ALBERT [US], et al);
 [A]US6307776  (SO HOCK C [US], et al);
 [A]US8000141  (SHALVI OFIR [IL], et al)
The EPO accepts no responsibility for the accuracy of data originating from other authorities; in particular, it does not guarantee that it is complete, up to date or fit for specific purposes.